23 research outputs found

    Traumatic skull fractures in dogs and cats: A comparative analysis of neurological and computed tomographic features

    Get PDF
    Background Traumatic skull fractures (TSF) are relatively frequent in dogs and cats, but little information is available regarding their clinical and imaging features. Hypothesis/Objectives To describe the neurological and computed tomographic (CT) features of a large cohort of dogs and cats with TSF. Animals Ninety‐one dogs and 95 cats with TSF identified on CT. Methods Multicenter retrospective comparative study. Signalment, cause of trauma, fracture locations and characteristics, presence of neurological deficits, and 1‐week survival were recorded. Fractures were classified according to the extent of fragmentation and displacement. Results The cranial vault was affected more frequently in dogs (P = .003), whereas the face and base of the cranium more often was affected in cats (P < .001). Cats presented with multiple fractures more frequently (P < .001). All animals with TSF in the cranial vault were more likely to develop neurological signs (P = .02), especially when depressed fractures were present (95% confidence interval [CI], 1.7‐8.2; P = .001). Animals with TSF located only in the facial region were less likely to have neurological signs (odds ratio with Mantel‐Haenszel's method [ORMH], 0.2; 95% CI, 0.1‐0.6; P = .004). Most affected animals (84.9%) survived the first week post‐trauma. Death was more likely with fractures of the cranial vault (P = .003), especially when fragmented (P = .007) and displaced (P = .004). Conclusions and Clinical Importance Traumatic skull fracture distribution and patterns are different between dogs and cats. Cranial vault fractures were associated with neurological deficits and worse survival. The presence of TSF alone should not be considered a negative prognostic factor because most affected animals survived the first week

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    International Veterinary Epilepsy Task Force Consensus Proposal: Diagnostic approach to epilepsy in dogs

    Get PDF
    This article outlines the consensus proposal on diagnosis of epilepsy in dogs by the International Veterinary Epilepsy Task Force. The aim of this consensus proposal is to improve consistency in the diagnosis of epilepsy in the clinical and research settings. The diagnostic approach to the patient presenting with a history of suspected epileptic seizures incorporates two fundamental steps: to establish if the events the animal is demonstrating truly represent epileptic seizures and if so, to identify their underlying cause. Differentiation of epileptic seizures from other non-epileptic episodic paroxysmal events can be challenging. Criteria that can be used to make this differentiation are presented in detail and discussed. Criteria for the diagnosis of idiopathic epilepsy (IE) are described in a three-tier system. Tier I confidence level for the diagnosis of IE is based on a history of two or more unprovoked epileptic seizures occurring at least 24 h apart, age at epileptic seizure onset of between six months and six years, unremarkable inter-ictal physical and neurological examination, and no significant abnormalities on minimum data base blood tests and urinalysis. Tier II confidence level for the diagnosis of IE is based on the factors listed in tier I and unremarkable fasting and post-prandial bile acids, magnetic resonance imaging (MRI) of the brain (based on an epilepsy-specific brain MRI protocol) and cerebrospinal fluid (CSF) analysis. Tier III confidence level for the diagnosis of IE is based on the factors listed in tier I and II and identification of electroencephalographic abnormalities characteristic for seizure disorders. The authors recommend performing MRI of the brain and routine CSF analysis, after exclusion of reactive seizures, in dogs with age at epileptic seizure onset 6 years, inter-ictal neurological abnormalities consistent with intracranial neurolocalisation, status epilepticus or cluster seizure at epileptic seizure onset, or a previous presumptive diagnosis of IE and drug-resistance with a single antiepileptic drug titrated to the highest tolerable dose

    International Veterinary Epilepsy Task Force consensus report on epilepsy definition, classification and terminology in companion animals

    Get PDF
    Dogs with epilepsy are among the commonest neurological patients in veterinary practice and therefore have historically attracted much attention with regard to definitions, clinical approach and management. A number of classification proposals for canine epilepsy have been published during the years reflecting always in parts the current proposals coming from the human epilepsy organisation the International League Against Epilepsy (ILAE). It has however not been possible to gain agreed consensus, “a common language”, for the classification and terminology used between veterinary and human neurologists and neuroscientists, practitioners, neuropharmacologists and neuropathologists. This has led to an unfortunate situation where different veterinary publications and textbook chapters on epilepsy merely reflect individual author preferences with respect to terminology, which can be confusing to the readers and influence the definition and diagnosis of epilepsy in first line practice and research studies. In this document the International Veterinary Epilepsy Task Force (IVETF) discusses current understanding of canine epilepsy and presents our 2015 proposal for terminology and classification of epilepsy and epileptic seizures. We propose a classification system which reflects new thoughts from the human ILAE but also roots in former well accepted terminology. We think that this classification system can be used by all stakeholders

    International Veterinary Epilepsy Task Force recommendations for systematic sampling and processing of brains from epileptic dogs and cats

    Get PDF
    Traditionally, histological investigations of the epileptic brain are required to identify epileptogenic brain lesions, to evaluate the impact of seizure activity, to search for mechanisms of drug-resistance and to look for comorbidities. For many instances, however, neuropathological studies fail to add substantial data on patients with complete clinical work-up. This may be due to sparse training in epilepsy pathology and or due to lack of neuropathological guidelines for companion animals. The protocols introduced herein shall facilitate systematic sampling and processing of epileptic brains and therefore increase the efficacy, reliability and reproducibility of morphological studies in animals suffering from seizures. Brain dissection protocols of two neuropathological centres with research focus in epilepsy have been optimised with regards to their diagnostic yield and accuracy, their practicability and their feasibility concerning clinical research requirements. The recommended guidelines allow for easy, standardised and ubiquitous collection of brain regions, relevant for seizure generation. Tissues harvested the prescribed way will increase the diagnostic efficacy and provide reliable material for scientific investigations

    International Veterinary Epilepsy Task Force Consensus Proposal: Outcome of therapeutic interventions in canine and feline epilepsy

    Get PDF
    Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed

    Cerebrospinal fluid lactate in dogs with inflammatory central nervous system disorders.

    Get PDF
    BACKGROUND Cerebrospinal fluid (CSF) lactate is frequently used as a biomarker in humans with inflammatory central nervous system (CNS) disorders including bacterial meningitis and autoimmune disorders such as multiple sclerosis. HYPOTHESIS Cerebrospinal fluid lactate concentrations are increased in a subset of dogs with inflammatory CNS disorders. ANIMALS One hundred two client-owned dogs diagnosed with inflammatory CNS disease. METHODS Case series. Cases were identified both prospectively at the time of diagnosis and retrospectively by review of a CSF biorepository. Cerebrospinal fluid lactate was analyzed with a commercially available, handheld lactate monitor. Subcategories of inflammatory disease were created for comparison (eg, steroid-responsive meningitis arteritis, meningoencephalitis of unknown etiology). RESULTS Cerebrospinal fluid lactate concentrations were above reference range in 47% of dogs (median, 2.5 mmol/L; range, 1.0-11.7 mmol/L). There was no significant difference in lactate concentrations between disease subcategories (P = .48). Significant but weak correlations were noted between CSF lactate concentration and nucleated cell count (r = .33, P < .001), absolute large mononuclear cell count (r = .44, P < .001), absolute small mononuclear cell count (r = .39, P < .001), absolute neutrophil cell count (r = .24, P = .01), and protein (r = .44, P < .001). No correlation was found between CSF lactate concentration and CSF red blood cell count (P = .58). There was no significant association of CSF lactate concentration with survival (P = .27). CONCLUSIONS AND CLINICAL IMPORTANCE Cerebrospinal fluid lactate concentrations could serve as a rapid biomarker of inflammatory CNS disease in dogs

    Cerebrospinal fluid lactate concentrations in dogs with seizure disorders.

    Get PDF
    BACKGROUND Cerebrospinal fluid (CSF) lactate concentrations increase after seizure activity in many human patients independent of the underlying disease process. The effect of seizure activity on CSF lactate concentration in dogs is unknown. HYPOTHESIS/OBJECTIVES Cerebrospinal fluid lactate concentration is unaffected by seizure activity in dogs and is more dependent on the underlying disease process causing the seizures. ANIMALS One-hundred eighteen client-owned dogs with seizure disorders. METHODS Case series. Cerebrospinal fluid lactate concentration was determined using a commercially available lactate monitor. Seizure semiology, time from last seizure to CSF collection, number of seizures within the 72 hours preceding CSF collection, and clinical diagnosis were recorded. RESULTS Dogs with focal seizures had higher CSF lactate concentrations than did those with generalized seizures (P = .03). No differences in lactate concentrations were found among dogs with single seizures, cluster seizures or status epilepticus (P = .12), among dogs with CSF collection at different time points after the last seizure activity (P = .39) or among dogs having different numbers of seizures within the 72 hours preceding CSF collection (P = .42). A significant difference (P = .001) was found in CSF lactate concentrations among diagnostic groups, and dogs with inflammatory and neoplastic disease had higher concentrations than did dogs with idiopathic or unknown epilepsy. CONCLUSIONS AND CLINICAL IMPORTANCE Cerebrospinal fluid lactate concentration is minimally affected by seizure activity in dogs and increased concentrations are more likely associated with the underlying disease process
    corecore